a2 United States Patent

Yeung et al.

US009384144B1

(10) Patent No.:

(45) Date of Patent:

US 9,384,144 B1
Jul. 5, 2016

(54)

(71)

(72)

(73)

")

@

(22)

(60)

(1)

(52)

(58)

ERROR DETECTION USING A LOGICAL
ADDRESS KEY

Applicant: SK Hynix Inc., Gyeonggi-do (KR)

Inventors: Kwok Wah Yeung, Milpitas, CA (US);
Marcus Marrow, San Jose, CA (US);
Aditi R. Ganesan, San Jose, CA (US)

Assignee: SK Hynix Inc., Gyeonggi-do (KR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 21 days.

Appl. No.: 14/550,522

Filed: Nov. 21, 2014

Related U.S. Application Data

Provisional application No. 61/970,228, filed on Mar.
25, 2014.

Int. Cl1.

GO6F 12/10 (2016.01)

GO6F 11/10 (2006.01)

U.S. CL

CPC GO6F 12/10 (2013.01); GOGF 11/1016

(2013.01); GOGF 12/1027 (2013.01)
Field of Classification Search
CPC GOGF 12/10; GOG6F 12/1027
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

(56)
4,373,179 A * 2/1983
4,604,688 A * 8/1986
5,517,488 A * 5/1996
9,298,472 B2* 3/2016
2007/0255924 Al* 11/2007
2013/0054934 Al* 2/2013
2013/0238855 Al* 9/2013
2013/0250686 Al* 9/2013
2013/0275656 Al* 10/2013
2014/0369124 Al* 12/2014
2015/0019878 Al* 1/2015

* cited by examiner

Katsumata GOGF 12/1036
711/207

Toneccoovevvnnen. GOG6F 12/1475
711/207

Miyazakic.c.... HO4L 29/06
370/225

Kohigaccccoo.e. GO6F 9/4418
Moyerc..... GO6F 12/1027
711/202

Mitsugicc..... GOG6F 12/1408
711/203

Satran GO6F 12/0871
711/118

Marukame G11C 16/08
365/185.12

Talagala GOGF 12/0246
711/103

Moon ..oocovereninnenn. Gl1C 16/16
365/185.11

Gammel GOG6F 12/10
713/190

Primary Examiner — Joseph D Torres
(74) Attorney, Agent, or Firm — 1P & T Group LLP

&7

ABSTRACT

A logical address key is generated based at least in part on a
logical address. Encoded data is generated by systematically
error correction encoding the logical address key and write
data. One or more physical addresses are determined that
correspond to the logical address where the physical
addresses that correspond to the logical address are dynamic.
At the physical addresses, the encoded data is stored with the

logical address key removed.

7 Claims, 5 Drawing Sheets

- 570

Solid

State
Storage

500 Storage Controller
A
Write Processor
510 512 514 516
e 2 2 =
. Error
Write Key) Key Storage
Data Inserter Correction Remover Interface
Encoder
A A
Write LAK Write
Write —| Physical
Logical L i 5/30 Address
Add -
ress L» Logical Address |, 520 L» Address
Read r Key Generator ’—> Map
Logical L
Address PhRyesE;Sal
550 Read LAK Address
~
Error < Read Processor
568 566 564 562 560
2 2 2 Z Z
Read Key Key EC] Key Storage |,
Data Remover Comparator Decoder Inserter Interface [

U.S. Patent

Jul. 5, 2016 Sheet 1 of 5

(Start)

A

US 9,384,144 B1

Generate a logical address key based at
least in part on a logical address

- 100

A

Generate encoded data by systematically
error correction encoding the logical address
key and write data

- 104

A

Determine one or more physical addresses
that correspond to the logical address,
wherein the physical addresses that
correspond to the logical address are
dynamic

- 106

A

Store, at the physical addresses, the
encoded data with the logical address key
removed

- 108

End

FIG. 1

U.S. Patent Jul. 5, 2016 Sheet 2 of 5 US 9,384,144 B1

1 Start)

A

Generate a logical address key based at least in part | 200
on a logical address

Determine one or more physical addresses that

correspond to the logical address, wherein the physical | 202

addresses that correspond to the logical address are
dynamic

Read data from the physical addresses - 204

N

Perform error correction decoding on the read data,
with the logical address key inserted, in order to i 206
produce at least a corrected data portion and a

corrected logical address key portion

Error correction
decoding successful
and corrected LAK

portion matches LAK?

Yes No

Y

Output the corrected data [210
portion 212

A 4
Flag an error

FIG. 2

U.S. Patent Jul. 5, 2016 Sheet 3 of 5 US 9,384,144 B1

320 ,— 300

310 [Data; e TN
: Solid State Storage
320 322

/ / R B T

312 [Datar | LAK: > PA RS
PA;
320 322
= Z PAs
314 [Datar |- LAK; | EC PA,
320 324 ¥__//
Z Z

316 [Datay+-ECGe

Address Map

PA; is Accidentally LAT | PAY « 330
Overwritten LA, PA/
350

—

370a 374 ~— " T

360 | Datay | ECC, | < PA; | Data, | ECC:
370a 372a 374 Phz
— o PAs
362 |, [UAK | ooe AL
370b 372b N
364 | Datay-|-LAKy| where LAKy # LAK,

FIG. 3

U.S. Patent Jul. 5, 2016 Sheet 4 of 5 US 9,384,144 B1
— 400
Bitis a 1 Bitisa 0
_A-
— — — Erasure ™
(Equally
Highest Split Highest
Certainty Between a Certainty
Bitis a1 Oanda1) Bitisa 0
| | | | | | | |
| | | | | | | |
-4 -3 -2 -1 0 1 2 3
3-Bit LLR

FIG. 4

US 9,384,144 B1

Sheet 5 of 5

Jul. §5,2016

U.S. Patent

G 'Old

abe.ioig
SIS

plios

025

,| 90eLal | | Jewesu| | | Jepodeqg | Jojesedwon Janoway >
abeio1g Aoy 03 Aoy Aoy
P 7 X ~ 7 & =4
09 9% 99 999 899
J0SS9201d peay >
Py 7
ssaIppy 08¢
[eISAU MV pesy
pesy
dep < Jojelauan) Aay L
SSaippy |« 0zs | sseuppy [eoa1bo
$S2.ppY om\m H
|eoisAud
8JUM MV 8lM
Y A 4
Japooug
aoBLBU| Janowsy LOI108.1107) Jayesuy|
sbeioyg | Loy b 1043 A foy A
~ 7 7 7
918 143 cLs 0lG

J0SS890.1d S1IAA

Jajjonuon abelo)g

00S

eled
pesy

Jouq

SS2UppPY
|e21b60

pesy

SS2IppY
|eo1bo

UM

eleqg
SIIM

US 9,384,144 B1

1
ERROR DETECTION USING A LOGICAL
ADDRESS KEY

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/970,228 entitled KEYS FOR ERROR
DETECTION filed Mar. 25, 2014 which is incorporated
herein by reference for all purposes.

BACKGROUND OF THE INVENTION

New types of non-volatile, random-access memories
which use solid state storage are being developed. PCRAM is
one such type of memory being developed. As with any new
technology, there will be new problems which have not been
encountered before. Techniques which address these new
problems would be desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a flowchart illustrating an embodiment of a pro-
cess for storing data in a manner that permits detection of a
mapping-related error.

FIG. 2 is a flowchart illustrating an embodiment of a pro-
cess for reading data, where an erroneous mapping between
logical and physical addresses is able to be detected.

FIG. 3 is a diagram illustrating an embodiment of an error
scenario in which data is accidentally overwritten.

FIG. 4 is a diagram illustrating an embodiment of soft
information.

FIG. 5 is a diagram illustrating an embodiment of a system
that performs the read and write processes described above.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-

10

15

20

25

30

35

40

45

50

55

60

2

standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1 is a flowchart illustrating an embodiment of a pro-
cess for storing data in a manner that permits detection of a
mapping-related error. In some embodiments, the process is
performed by a storage controller which writes data to and
reads data from solid state storage (e.g., PCRAM). In some
embodiments, a storage controller comprises one chip (i.e., a
semiconductor device, such as an application-specific inte-
grated circuit (ASIC) or a field-programmable gate array
(FPGA)) and the solid state storage comprises one or more
other chips.

In some embodiments, the process of FIG. 1 is performed
in response to receiving an instruction to write data to a
logical address. For example, the instruction may be received
by a storage controller and the instruction may be from a host.
In some applications, a host only has knowledge of logical
addresses and not physical addresses (e.g., the host knows
that data X is stored at logical address Y but does not know
what physical address(es) the data is actually located at). In
some embodiments, the storage controller is responsible for
managing a logical to physical map which is consulted by the
storage controller whenever a write instruction or a read
instruction is received from the host. In some embodiments,
there is a circuit which dynamically determines the logical to
physical mapping.

At 100, a logical address key is generated based at least in
part on a logical address. In some embodiments, a logical
address key is only a few bits long (e.g., 4 bits) so that the error
correction capability of a code is mostly directed towards
correcting (as/if needed) the payload data (e.g., as opposed to
correcting the logical address key). In one example, a logical
address key is 32 bits (i.e., 4 B) long and includes the lower 32
bits of the logical address.

Using only the logical address when generating the logical
address key may result in some logical addresses sharing the
same key. In order to reduce this possibility, in some embodi-
ments the logical address key is based on metadata that is
received from or otherwise managed by the host in addition to
the logical address. For example, some hosts generate a
(write) sequence number which the host associates with each
logical block. In some such systems, the logical address
includes (part of) the logical address and (part of) a sequence
number. Note that using metadata is not a requirement and in
some cases the logical key address is derived without meta-
data.

At 104, encoded data is generated by systematically error
correction encoding the concatenated logical address key and
write data. In systematic error correction encoding, the input
data (in this case, the concatenated logical address key and
data) is repeated or otherwise included in the output data. In
examples shown herein, the concatenated logical address key
and data occurs first in the encoded data followed by the
parity, but that ordering is merely exemplary and is not
intended to be limiting.

At 106, one or more physical addresses that correspond to
the logical address are determined, wherein the physical
addresses that correspond to the logical address are dynamic.
In one example, information is refreshed in solid state storage
by moving the information (i.e., unchanged) from one physi-
cal address to another physical address in order to refresh the
data. In solid state storage, information is stored in the form of

US 9,384,144 B1

3

voltage. Nothing is a perfect electrical insulator, including
solid state storage, so charge slowly leaks out. As a result, if
information is stored for a long period of time in solid state
storage, it needs to be refreshed (e.g., by copying the infor-
mation to a new physical location) so that proper voltage
levels can be restored. In that example scenario, the logical
address remains the same but the physical address to which it
maps changes. This is merely one example scenario and the
mapping between logical and physical addresses may change
for any number of reasons.

At 108, the encoded data with the logical address key
removed is stored at the physical addresses.

FIG. 2 is a flowchart illustrating an embodiment of a pro-
cess for reading data, where an erroneous mapping between
logical and physical addresses is able to be detected. In some
embodiments, the process of FIG. 2 is performed by a storage
controller and solid state storage is read. In some embodi-
ments the process of FIG. 2 is performed in response to
receiving an instruction to read from a logical address. Simi-
lar to above, the instruction may be received by a storage
controller and/or the instruction may have been issued by a
host.

At 200, a logical address key is generated based at least in
part on a logical address.

At 202, one or more physical addresses that correspond to
the logical address are determined, wherein the physical
addresses that correspond to the logical address are dynamic.
For example, in solid state storage systems, the address map-
ping between logical addresses and physical address is
dynamic because data may need to be refreshed, causing a
change in the physical address but not the logical address.

At 204, data is read from the physical addresses.

At 206, error correction decoding is performed on the read
data, with the logical address key inserted, in order to produce
at least a corrected data portion and a corrected logical
address key portion.

At 208, it is determined if error correction decoding is
successful and the corrected logical address key portion
matches the logical address key. To put it another way, the
decision at 208 is No if either error correction decoding is not
successful (because the error correction capability of the code
is exceeded because the number of errors contained in the
read data, with the logical address key inserted, is greater than
the maximum number of bits the code is able to correct), or if
the logical address key is corrected (i.e., so that the logical
address key before error correction decoding does not match
the logical address key after error correction decoding).

If the decision at 208 is Yes, then at 210 the corrected data
portion is output. The corrected data portion may include any
number of corrections or bit flips as a result of the error
correction decoding. If the decision at 208 is No, then at 212
an error is flagged. For example, an error message may be
passed up to the host from the storage controller.

In one example, the processes of FIGS. 1 and 2 are
employed in a PCRAM system. PCRAM has very small
block sizes (e.g., 64 Bytes or 128 Bytes). As a result of the
small block size, and the need to store error correction parity
information so that error correction decoding can be per-
formed on the read-back data, only a few bits (e.g., 4 bits or 8
bits) can be allocated to catch any logical to physical address
mapping errors. To put it another way, allocating more bits to
catch any logical to physical address mapping errors reduces
the number of bits which can be allocated towards error
correction; as a result, only a few bits can be allocated for the
first purpose. Other systems with much larger block sizes
(e.g., NAND Flash with 512 Bytes or 4 Kbytes block sizes)
are able to store the logical address in solid state storage (e.g.,

10

25

40

45

55

4

in some header that is stored with the encoded codeword in
the block), where it can be retrieved and compared at read-
back, but this is not feasible for PCRAM systems and other
small block systems. The techniques described herein permit
some logical to physical address mapping errors to be caught
using relatively few bits.

The following figure describes an example error scenario
which is detected using the read and write processes
described above.

FIG. 3 is a diagram illustrating an embodiment of an error
scenario in which data is accidentally overwritten. In the
example shown, diagram 300 shows data being stored accord-
ing to the process of FIG. 1.

At 310, write data (320) is received, for example from a
host, with an instruction to be written at logical address LA .

At 312, alogical address key (322) is concatenated to write
data (320) where logical address key 322 is generated based
on the logical address to which the data is to be written. In this
example, write data 320 is first followed by logical address
key (322) at 312, but this ordering is merely exemplary and is
not intended to be limiting. In some embodiments, the size of
logical address key 322 is relatively small compared to write
data 320 so that most of the error correction capability of the
code is directed towards write data 320 (e.g., 4 B for a code-
word size of 64 B or 128 B). Because of the relatively small
size of the logical address key, the degradation of the miscor-
rection rate is negligible.

At 314, write data 320 and logical address key 322 have
been systematically error correction encoded, producing
write data 320, logical address key 322, and parity 324.
Again, the ordering is merely exemplary and is not intended
to be limiting.

At 316, logical address key 322 is removed and only write
data 320 and parity 324 are stored in solid state storage at
physical address PA,. Logical address LA, corresponds to
physical address PA,; this is determined by consulting
address map 330. For convenience, a logical address corre-
sponds to a single physical address, but naturally in various
embodiments the mapping may be one to many, many to one,
or many to many.

At some point in time after write data 320 and parity 324
are stored at physical address PA,, PA, is accidentally over-
written because of an error in address map 330. Specifically,
both logical address LA, and LA, in address map 330 map to
PA, which causes PA, to be accidentally overwritten when
data associated with LA, is received by the storage controller
for storage. To illustrate the difference, information associ-
ated with the first logical address (i.e., LA,) is shown with a
grid pattern and information associated with the second logi-
cal address (i.e., LA,) is shown with a dotted pattern.

Diagram 350 shows data being read according to the pro-
cess of FIG. 2. A read instruction is received to read logical
address LA, . In response, physical address PA, is read and
read-back data 370a and read-back parity 374 are obtained at
360. As used herein, a hat (i.e., ”) indicates that a signal or
sequence is a read-back signal or sequence and as such may or
may not include some errors. Note that the data read back at
360 corresponds to logical address LLA,, not logical address
LA, because of the accidental overwrite.

At 362, the logical address key (372a) associated with
logical address LA is inserted between read-back data 370a
and read-back parity 374. Note that logical address key 372a
is not shown with a hat since it is not read back from solid state
storage. Instead, logical address key 372a is (re)generated
from logical address key LA . In one example, LAK ,=f(LLA)
where f(*) is a hash function. In another example, f(*) is a
function which takes the last four bits of the input.

US 9,384,144 B1

5

After error correction decoding read-back data 370a, logi-
cal address key 3724, and read-back parity 374, one of two
scenarios will occur. In the first scenario, error correction
decoding fails because the number of corrections (i.e., bit
flips) required to transform read-back data 370a, logical
address key 3724, and read-back parity 374 into an allowed
codeword is greater than the error correction capability of the
code (e.g., 4 bits flips would be required to get to a permitted
codeword, but the code has an error correction capability of 3
bits flips). Referring back to FIG. 2, the decision at step 208
would be No because error correction decoding is unsuccess-
ful and thus an error would be flagged at step 212.

The second scenario is shown at 364. In this scenario, the
error correction decoding is successful (in the sense that the
number of bit flips required to transform read-back data 370a,
logical address key 372a, and read-back parity 374 into an
allowed codeword is less than the error correction capability
of'the code), but corrected logical address key 3725 does not
match logical address key 372a because one or more bits were
flipped as a result of error correction decoding. As used
herein, a bar (i.e.,) indicates that a signal or sequence is an
error corrected signal or sequence. Referring back to FIG. 2,
the decision at step 208 would be No because the corrected
logical address key (e.g., 3725 in FIG. 3) does not match the
logical address key (e.g., 3724 in FIG. 3) and thus an error
would be flagged at step 212.

As such, the exemplary error shown in FIG. 3 would be
detected using the read and write processes described above.
In contrast, systems which do not use a logical address key in
the manner described above are not able to detect the error
scenario shown. For example, if the parity is generated using
only the (write) data, then read-back data 370a and read-back
parity 374 would most likely be able to be corrected to a
permitted codeword (without exceeding the error correction
capability of the code) and the system would not know that
that information is associated with a different logical address
and the proper data was accidentally overwritten.

The following figure shows an example of soft information
values which may be used for a logical address key when a
read process is performed. The logical address key inserted at
step 206 in FIG. 2, for example, may use certain prescribed
soft information values described below.

FIG. 4 is a diagram illustrating an embodiment of soft
information. In some embodiments, aread controller includes
a soft-input error correction decoder which takes as its input
soft information. In such systems, for example, inputs 370aq,
372a, and 374 in FIG. 3 would comprise soft information as
opposed to hard information. Hard information only includes
a decision (e.g., a certain bit is either a 0 or a 1) with no
corresponding certainty or likelihood in those decisions. In
contrast, soft information includes both a decision (e.g., a
certain bit is either a 0 or a 1) and a certainty (e.g., 95%
certainty in a corresponding decision).

Diagram 400 shows 3-bit log-likelihood ratio (LLR) val-
ues. LLR values are a type of soft information where the sign
(i.e., + or -) indicates the decision. In this example, negative
LLR values (i.e., -4, -3, -2, and -1) correspond to a decision
that a particular bit is a 1; positive LLR values (i.e., 1, 2, and
3) correspond to a decision that a particular bitisa 1. An LLR
value of 0 is referred to as an erasure. In that particular case,
there is no decision per se, because it is equally split between
a0andal.

The magnitude of the LLR value indicates the degree of
certainty in the corresponding decision, where a larger mag-
nitude indicates more certainty in the corresponding decision.
As such, an LLR value of -4 in this example indicates the
highest certainty (at least for 3-bit LLR values) in a corre-

10

15

20

25

30

35

40

45

50

55

60

65

6

sponding decision that a particular bit is a 1. Similarly, an
LLR value of 3 in this example indicates the highest certainty
in a corresponding decision that a particular bit is a 0. In
contrast, a magnitude of 1 (e.g., an LLR of -1 or 1) indicates
a relatively low degree of confidence.

Soft-input error correction decoders take into consider-
ation the certainties when making corrections. Bits with low
certainties (e.g., low magnitudes in the case of LLR values)
tend to be corrected first before bits with high certainties (e.g.,
high magnitudes in the case of LLR values). The technique
described above relies upon (for the later described scenario
where error correction decoding is successful) at least one bit
being flipped in the logical address key in order for mapping
related errors to be detected. As such, in some embodiments
where the error correction decoder is a soft-input decoder, a
logical address key which is inserted (e.g., between a read-
back data portion and a read-back parity portion) is con-
strained to have certainties which are at a medium or nominal
level (e.g., roughly half some highest or maximum magni-
tude). Using the 3-bit LLR values shown in diagram 400 as an
example, a logical address key may (in some embodiments)
be constrained or otherwise limited to an LR value of -2 (for
adecision of 1) or 1 (for a decision of 0) because magnitudes
of 2 and 1 (respectively) are roughly half the largest magni-
tude. In some embodiments, any magnitude other than the
highest or maximum magnitude is used for a logical address
key (e.g., anything other than a magnitude of 4 for negative
LLR values or a magnitude of 3 for positive LLR values).

In contrast, if LLR values with the highest certainties (e.g.,
an LLR of -4 or 3 in the 3-bit LLR case) were used for the
logical address key, this may undesirably prevent the soft-
input error correction decoder from making any corrections
to the logical address key, which in turn would prevent a
mapping error from being detected even though an error may
have occurred. To put it another way, it is undesirable to
unduly and/or unnecessarily prevent a soft-input error correc-
tion decoder from making a correction to the logical address
key.

FIG. 5 is a diagram illustrating an embodiment of a system
that performs the read and write processes described above. In
some embodiments, storage controller 570 comprises one
chip (i.e., semiconductor device) and solid state storage 540
comprises one or more other chips. For readability, some
signals are not labeled.

During a write, storage controller 570 receives write data
and a write logical address, for example from a host. Logical
address key generator 520 generates a write logical address
key based on the write logical address. The write logical
address key is passed from generator 520 to key inserter 510.
Key inserter 510 concatenates the write logical address key
and the write data (e.g., by appending the write logical
address key to the write data). The concatenated data is then
encoded by error correction encoder 512 using a systematic
error correction code. The encoded data (e.g., comprising the
write data, the write logical address key, and the parity) is then
passed to key remover 514 which strips off the write logical
address key, leaving only the write data and the parity.

Using address map 530, a write physical address is deter-
mined from the write logical address. For convenience, a 1:1
logical to physical address mapping is used in this example.
Storage interface 516 inputs the write physical address, as
well as the write data and parity, and stores the write data and
parity at the write physical address in solid state storage 540.

During aread, storage controller 570 receives a read logical
address. Using address map 530 (which in this example is
shared by write processor 500 and read processor 550), a read
physical address is determined from the read logical address.

US 9,384,144 B1

7

Storage interface 560 access solid state storage 540 and reads
the read physical address passed to it from address map 530.
Storage interface 560 passes the read-back information,
which includes a data portion and a parity portion, to key
inserter 562. Logical address key generator 520 (which is also
shared by write processor 500 and read processor 550) gen-
erates a read logical address key based on the read logical
address. The read logical address key is passed from genera-
tor 520 to key inserter 562 which inserts the read logical
address key, for example between the data portion and parity
portion of the read-back data. Error correction decoder 564
then performs error correction decoding on the read-back
data with the read logical address key inserted.

Key comparator 566 receives both the corrected logical
address key from error correction decoder 564 and the read
logical address key (e.g., as it was before decoding) from
generator 520. If they do not match, or if decoding by error
correction decoder 564 is unsuccessful, then key comparator
566 asserts an error flag. If decoding is successful, and the
corrected key and the original key match, then the decoded
data is passed to key remover 568 which removes the key. The
read data (e.g., corresponding to the corrected data portion) is
then output by key remover 568.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system, comprising:

a logical address key generator configured to generate a
logical address key based at least in part on a logical
address;

an error correction encoder configured to generate encoded
data by systematically error correction encoding the
logical address key and write data;

an address map configured to determine one or more physi-
cal addresses that correspond to the logical address,

10

15

20

25

30

35

8

wherein the physical addresses that correspond to the
logical address are dynamic; and

a storage interface configured to store, at the physical

addresses, the encoded data with the logical address key
removed.

2. The system of claim 1, wherein the system includes a
semiconductor device, including one or more of the follow-
ing: an application-specific integrated circuit (ASIC) or a
field-programmable gate array (FPGA).

3. The system of claim 1 further comprising solid state
storage, wherein the storage interface is further configured to
store the encoded data with the logical address key removed
on the solid state storage.

4. The system of claim 1, wherein the logical address key is
further based at least in part on metadata that is managed by
a host.

5. A method, comprising:

generating a logical address key based at least in part on a

logical address;

using an error correction encoder to generate encoded data

by systematically error correction encoding the logical
address key and write data;

determining one or more physical addresses that corre-

spond to the logical address, wherein the physical
addresses that correspond to the logical address are
dynamic; and

storing, at the physical addresses, the encoded data with the

logical address key removed.

6. The method of claim 5, wherein the method is performed
by a semiconductor device, including one or more of the
following: an application-specific integrated circuit (ASIC)
or a field-programmable gate array (FPGA).

7. The method of claim 5, wherein the logical address key
is further based at least in part on metadata that is managed by
a host.

